Two-dimensional isobutyl acetate production pathways to improve carbon yield
نویسندگان
چکیده
For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways.
منابع مشابه
Effect of Organic Substrate on Promoting Solventogenesis in Ethanologenic Acetogene Clostridium ljungdahlii ATCC5538
Clostridium ljungdahlii is a strictly anaerobic acetogene known for its ability to ferment a wide variety of substrates to ethanol and acetate. This bacterium presents a complex anaerobic metabolism including the acetogenic and solventogenic phases. In this study, the effect of various carbon sources on triggering the metabolic shift toward solventogenesis was considered. The bacterium was grow...
متن کاملMetabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate
Background Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered Pichia pastoris, an industrial workhorse in heterologous enzyme p...
متن کاملEngineering of Acetate Recycling and Citrate Synthase to Improve Aerobic Succinate Production in Corynebacterium glutamicum
Corynebacterium glutamicum lacking the succinate dehydrogenase complex can produce succinate aerobically with acetate representing the major byproduct. Efforts to increase succinate production involved deletion of acetate formation pathways and overexpression of anaplerotic pathways, but acetate formation could not be completely eliminated. To address this issue, we constructed a pathway for re...
متن کاملAddition of Autotrophic Carbon Fixation Pathways to Increase the Theoretical Heterotrophic Yield of Acetate
The production of valuable biological products from sugars via fermentation is of importance in the chemical industry. One key parameter by which processes are evaluated is the product carbon yield on substrate. In the normal growth of heterotrophic organisms on fermentable sugars, some carbon is lost as CO2. In the production of acetate from hexose or pentose sugars, homoacetogens using the re...
متن کاملEnzymatic formation of alpha-isopropylmalic acid, an intermediate in leucine biosynthesis.
Until recently, essentially all of our information concerning the biosynthesis of leucine stemmed from experiments with CY4labeled intermediates. Ehrensvard et al. (l), in experiments with yeast grown on C4-labeled acetate as the sole carbon source, showed that the carboxyl carbon of leucine is probably derived from the carboxyl of acetic acid. In isotopic competition experiments, Abelson and V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015